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ABSTRACT

The classical Stefan theory for the melting of a solid or the freezing of

a liquid is too simplistic to describe phenomena such as supercooling, in

which a liquid supports temperatures below its freezing point, or

superheating, the analog for solids, or dendritic growth, in which simple

shapes evolve to complicated tree-like structures. In this paper we develop a

general theory for two-phase phenomena of this type starting from general

thermodynamical laws which are appropriate to a continuum and which include

contributions of energy and entropy for the interface between phases. We show

that the interfacial temperature is generally not equal to the melting

temperature, but depends in a prescribed manner on the curvature of the

interface. We describe appropriate initial-boundary-value problems, at

various levels of approximation, and deduce corresponding Liapunov functions.

We also present a general theory of equilibria, and show that - for an

unbounded domain in isothermal equilibrium - there are no stable states in

which the bounded phase is solid and the unbounded phase supercooled liquid.

We show further that corresponding minimizing sequences for the free-energy

are consistent with the formation of dendrites.
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SIGNIFICANCE AND EXPLANATION

-' The classical Stefan theory for the melting of a solid or the freezing of

a liquid is too simplistic to describe phenomena such as supercooling, in

which a liquid supports temperatures below its freezing point, or

superheating, the analog for solids, or dendritic growth, in which simple

shapes evolve to complicated tree-like structures. In this paper we developsa

general theory for two-phase phenomena of this type. We developpartial

differential equations satisfied in the phase regions and free-boundary

conditions satisfied on the interface between phases, and givej arguments which

indicate that the resulting boundary-value problems predict the formation of
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ON THE TWO-PHASE STEFAN PROBLEM WITH
INTERFACIAL ENERGY AND ENTROPY

Morton E. Gurtin

I. Introduction.
A classical problem of mathematical physics is the Stefan problem for

the melting of a solid or the freezing of a liquid. The underlying theory,
however, Is too simplistic to describe phenomena such as supercooling, in
which a liquid supports temperatures below its freezing point, or
superheating, the analogous phenomenon for solids, or dendrite formation
(cf. Figure 1), in which simple shapes, such as spheres, evolve to
complicated tree-like structures.' The past two decades have seen the
development of more general theories2 for phenomena of this type, a
critical ingredient being a free-boundary condition at the solid-liquid
interface I = 1(t) in which the temperature depends on the curvature of 1.
In these theories questions arise as to what are the interface conditions;3

in fact, it is not clear which of the interface conditions are constitutive
assumptions and which follow directly from the underlying balance laws.

It Is the purpose of this paper to develop a theoretical framework for
theories of this type starting from general thermodynamical laws which
are appropriate to a continuum and which include interfacial contributions
for both energy and entropy. We do not, however, seek the broadest possible theory,
but rather, to focus our attention on the thermodyn;.mics and to keep the under-
lying relations transparent, we limit our discussion to rigid heat conductors.4

* to rigid heat conductors.4

Our chief assumptions - apart from general equations of state for the
bulk and interfacial quantities - are that the interface I produce no
entropy and that the temperature be continuous across i. Among our main
results are the interface conditions

(q]-m = v[E] - v-eA n I.

T ([El- e)/([5]-ks) on 1, (1.1)

vm-n - 0 on al.
In which T Is the temperature; [E], [5], and [q] are the jumps s In
energy, entropy, and heat flux across the interface; e and s are the
interfacial values of energy and entropy; , v, and m, respectively, are,
for the Interface, the sum of principal curvatures, the normal velocity, and

• .a unit normal vector (with sign convention explained in the text); eA is

1Ct. Chalmers 119641 and Delves 19741 for discussions of these phenomena.
2 Millns and Sekerka 11963.1964 . Vronkov [ 19651. See also the review articles by
Sekorks 11968.1973.19B4. Chernov 119721. Delves 119741. and Longer 119501.
3cr. Rogers 119331 for a discussion of some of the inconsistencies in the literature.

•_4A future paper will discuss the effect of vreying concentration.

50ur convention for juns and for the latent heat L is 'phase 2 minus phase 1". with phases labeled
so that L 1 0. Thus for a solid-liquid system phs-se 2 would denote the liquid, and for that reason we
will often refer to phases 1 and 2. respectively, as the solid and liquid phases.
Sponsored by the United States Army under Contract Nos. DAAG29-80C-OO

4 1 and

* DAAG29-82-K-0002 and by the National Science Foundation under Grant No.

DMS-8404116.
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Figure 1. Picture of dedritic ice crystal
(Fujioka (1978]).
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the time derivative of e following the interface; n is the outward unit
normal on the boundary of the region B occupied by the body.

The first of (1.1) is essentially the first law of thermodynamics at the
interface. The second - derived within the fully dynamical theory - Is a
condition of local equilibrium expressing balance of free-energy across
the interface. The third is a contact condition for that portion of the
interface1 which intersects the boundary of B; it assserts that - where
the interface meets 6B - it is orthogonal to 6B or stationary.

We discuss two types of boundary conditions: an isolated boundary on
which q-n = 0; an isothermal boundary on which T is constant. We show
that, for either of these boundary conditions,

interfacial area is uniformly bounded In time (1.2)

at least when B is bounded
We also discuss the equilibrium theory under isothermal boundary

conditions, and define stable states as minimizers of a global free-energy.
We consider a material for which the bulk free-energies cross at a single

- temperature TM, and show - for bounded B - that stable states are

always single phase,2 the stable phase being the phase with lower
free-energy. TM therefore represents the temperature at which a change

in stable phase occurs, and, for that reason, we refer to TM as the

transition temperature.
The question of stability for unbounded B is far more interesting.

Here our results, expressed in terms of a solid-liquid system In
isothermal equilibrium, assert that:3

1. There are no stable states in which the bounded phase is solid and the
unbounded phase supercooled liquid.
2. Under the conditions of (1), minimizing sequences of the free-energy
are consistent with interfacial Instabilities such as the formation of
complicated arrays of thin spikes, behavior indicative of dendriticgrowth.

* Next, we introduce a quasi-static model for situations in which the
Interface moves slowly compared with the time scale for heat conduction.
The chief constitutive hypothesis underlying this model is that - in each
of the phases - both the bulk energy and the bulk entropy are constant. We

* also assume that the conductivities ki, the interfacial energy e, and the

lHere it is tacit that alca.
2 Here It is important to emphasize that the boundary is held at constant temperature; two-phase
solutions are possible when. for example. the body is isolated and the total energy constrained (cf.
Section 3.3).
31nt their pioneering paper of 11963). Mullins and Sekerka. working within the dyna. theory
described by (1.13). established the instability of the Interface for Infinitaslmal pertrbatlons of a
sphere solidifying in a supercooled melt. The assertions (1) and (2) ae analogs. within the equtlibrium
theory, of the Mullins-Sekerka Instability.

0 -3-
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Interfacial entropy s are constant. Let B(t) denote the subregion of B

occupied by phase 1 (I = 1,2), and let

u = T - TM.

Then these assumptions lead to the system

&u = 0, q = -kigradu in B,

u = - 1(1-aS), [q]-m = (L -ke)v on 1. (1.3)

vm-n = 0 on al,

where

h = TMf(TM)/L, a = T~s/L (1.4)

with f(-) the interfacial free-energy and L the latent heat. We are able
to establish global growth-conditions for (1.3) under the two types of
boundary conditions discussed previously. In particular, letting

= Tmf(To)/', B = e/L,

we show that:
(1) for an isolated boundary,

vol(B2)r + Barea(I) = 0, area(D) 1 0; (1.5)

i) for an isothermal boundary,

uovol(B2)" + garea(I)" 1 0. (1.6)

A detailed analysis of (1.5) and (1.6) Is beyond the scope of this paper.
We do, however, give a lengthy discussslon and Indicate several results
assuming the stability of solutions as t+-o. In particular, we give

* arguments in support of the interfacial instabilities described In (1) and
(2) above. The result (1.5) seems also to Indicate an Instability

characterized by a solid phase whose volume tends to zero, but whose
Interfacial area does not. We shall refer to this phenomenon as the

IWe use the following notation: grad. div, and A are the gradient, divergence, and LplaCin
operators; for F a F(t) and f •fx,t). F1 dF/dt and f* M at; vol(') and area(-) denote the
volume and rea measures.

. ,- , %



formation of a dendrite with null volume.
Thus far we have made no assumptions concerning the size of the

interfacial quantities. Moreover, even though the hypotheses underlying
(1.3) are strong, the theory is exact in the sense that the underlying
equations are fully compatible with the first two laws of thermodynamics.

Next, we return to the general relations (1. 1), but in situations forwhich interfacial energy and entropy are small. We show that to within

terms of higher order in these quantities,

[q]-m = Lv,

, u = -h

with h as defined In (1.4). The relations (1.7) are central to the modem
work on solidification.'

We discuss amodel based on the interface conditions (1.7) In
conjunction with assumptions of coristant specific heats and constant
conductivities. These assumptions lead to the equations

*u" -dlvq, q = -kigradu In B1,

I ,, [q]-m = Lv on 1, (1.8)

vm-n - 0 on al.

The assumption

C, = C2  (1.9)

Is common In the literature; granted (1.9), we are able to establish the
following growth conditions for (1.8):
(i) for an Isolated boundary,

(vol(B2) + CVum]" = 0,
(1.10) c

(h area(1) - UmVol(B 2) + (C/2)J(UUm) 2 *  0;
B

(Ii) for an isothermal boundary,

(h area(l) - UoVOl(B 2) + (C/2)f(U-Uo) 2P ( 0. (0 .I 1)
B

o Cr. the references cited in Footnote 1 on page 1. iL
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Here V - vol(B); C - Ci/L; um is the mean value of u; In Case (i!) uo is

* the constant boundary-value of u.
A standard model for solidification follows from (1.8) when the terms

Ciu& are neglected:

&u =0, q = -ktgradu in Bp

u =- IL,, [q]-m = Lv on I, (1.12)

vm-n = 0 on aI.

Here, in place of (1.10) and (1.11), we have the conditions:
V i (I) for an isolated boundary,

vol(B1)'= 0, area(I) 10; (1.13)

(ii) for an isothermal boundary,

uvol(B ) + h area(J) 10. (1.14)

We discuss consequences of the relations (1 10) and (1 11) and of the
relations ( 1. 13) and ( 1. 14).

Because of space limitations, I do not discuss the reated theory which
allows for variable concentration. As would be expected, the theory and
results are, for the most part, completely analogous to those presented
here.

I do not list any but the most basic hypotheses of smoothness, since
such hypotheses tend to obscure the main ideas, and since at this stage of
the theory they are academic: it is not at all clear what are appropriate
function spaces in which to analyze the underlying partial-differential
equations.

• .
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PART I. EQUILIBRIUM THEORY.

2. Assumptions. Terminology.
2.1. Constitutive assumptions.

We consider a body B consisting of two phases separated by an
Interface I, and write B for the subregion of B occupied by phase i
(1 1,2). (Cf. Figure 2). We assume that:

(Al) B Is a closed, regular region with

B bounded unless stated otherw/se;

(A2) the B, are closed, regular regions w.1h disjoint interiors, and with

8 - BI U B2, I -aBl)0B2,

so that B, and B2 partition B.

* We consider bodies whose behavior in equilibrium is described by five
fields:

E(x), the bulk internal energy per unit volume;
S(x), the bulk entropy per unit volume;
T(x), the temperature;
e(x), the interfacial energy per unit area;
s(x), the Interfacial entropy per unit area.

We assume that In each of the phase regions Bi the material is governed

by constitutive equations

E = E(T), S = S(T), (2.1)

with1

S (T) = -F,'(T), F (T) = E (T) - T S(T), (2.2)

F,(T) being the free energy of phase I. We assume further that:

(A3) the specific heats

C (T) - E,'(T) (2.3)

are strictly positive;
1The prime denotes differentiation with respect to temperature.

-'7-
6
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Figure 2. The phase regions B, and the interface 1.
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(A4) the free energies F,(T) coincide at a unique temperature T - TM
called the transition temperature:

FI(TM) = F2(TM). (2.4)

The latent heat L is the difference in energy between phases at the
transition temperature:

L - E2(TM) - EI(TM), (2.5)

and a third assumption we shall make is that L a 0; by labelling phases
so that

phase 2 has higher (internal) energy at the transition temperature,
(2.6)

we may, without loss in generality, write this assumption as:

- (A5) L > 0. (2.7)

Then, by (2.2)2, (2.4), and (2.5),

S2(TM) - SI(TM) = L/TM > 0. (2.8)

In view of the agreement (2.6), we shall adopt the following

Convention. We will refer to phase I as the solid phase, phase 2 as the
liquid phase.

We do this for convenience only; the theory is equally valid for
liquid-liquid systems, liquid-vapor systems, etc

The next result, a direct consequence of the our assumptions, shows that
the bulk free-energies have the form shown in Figure 3.

Properties of the bulk free-energies.
() The bulk free-energies are strictly concave. for T To,

F (T) < F (T0) + F1'(To)(T -TO). (2.9)

S(i) The bulk free-energies cross at T = TM; in fact,

FI(T) <F2(T) for T<TM; F1(T)>F 2(T) for T>TM (2.10)

* -9-



r'(r

Figure 3. Free-energtes F,(T) as functions of temperature T. TM Is

the transition temperature.
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(111) Let u - I - IM" /ne, as u-0,

FI(T) - F2(T) Lu/TM + O(u2). (2.11)

Proof By (2.2) and (2.3),

Fi"(T) - - Ci(T)/T ( 0,

which implies (I). Further, (2.2) i and (2.8) imply that

FI(T M) - F2"(TM) - LTM > 0,

which with (A4) yield (1i) and (ii). 0

The last result shows that the solid phase has lower free-energy at
temperatures below transition, the liquid phase has lower free-energy at
temperatures above transition. Even so, it is possible to have the liquid
phase at temperatures T < TM, or the solid phase at temperatures T > TM;
in the former case the liquid is supercooled; in the latter the solid is
superheated.' Generally, we will use the term superthermal to designate
either of these two situations. Precisely: phase i is superthermal at
temperature T if, for k the other phase,

Fk(T) < Fi(T).

We write constitutive equations for I analogous to those for the
Individual phases. In particular, we assume that

e- e(T), s = s(T), (2.12)

s(T) - -f(T), f(T) - e(T) - Ts(T), (2.13)

and that the Interfacial free-energy fIT) and the Interfacial
specific-heat

* c(T) - e'(T) (2.14)

obey the following hypothesis for all T > 0:

(A6) fiT) > 0, c(T) 0. 215

Then, arguing as above, we see that

Icr. the Interesting discussion by Delves 11974), Section 3.2.
-11-
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f is concave (2.16)

(although not necessarily strictly concave).
It Is convenient to Introduce the Gibbs functions:

W,(T,To) = E(T) - ToS(T), w(T,T o) = e(T) - Tos(T). (2.17)

Clearly,

FI(To) = W(ToTo), f(To) = w(To'To). (2.18)

In addition, we have the following less trivial

Properties of the Gibbs functions.
(I) For T To$

- FI(T o ) ( W,(T,To), 0 < f(TO) i w(T,To). (2.19)

(ii) For each fixed T each of the 61bs functions (2.17): has a minimuw
at T = TO; is monotone decreasing on (0, TO); is monotone Increasing on

(To,=,). Moreover, for W, the minimum and monotonicity ar strict

Proof We wlll establish (1) and (ll) for W, only; the proof for w is
strictly analogous. The inequality (2.19), follows from (2.2) and (2.9)
(with the roles of T and To reversed). Also, by (2.2), (2.3), and (2.17),

( / T)Wa(T,T o) = (T - To)I)/T,

*which yields (ii) for Wi. 0

Another consequence of the strict positivity of the bulk specific-heats,
obtained by combining (2.2) and (2.9), is the inequality

E(T) - EI(T o) To{S1(T) - SI(To)} (2.20)

for T i TO; (2.20) expresses the strict convexity of the bulk energies as
* wfunctions of the corresponding bulk entropies.

% -12-
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2.2. Frequently used moduli.
In. this section we list constitutive moduli that are used repeatedly

throughout the paper.

Modulus Section

F*(T0) - bulk free-energy of the bounded phase
minus the bulk f ree-energy of the 3.2
unboundeid phase

b = - f (To)/ F*(TO). 3.2

h = Tmf(Tm)/L 8.1

a =TMs/L 8.1

4 a T~f(T0)/L 8.1

B = e/L 8.1

A =h(C'- C2) -e 10.1

?0,



i 3. btab111ty.
3.1. Isothermal boundary.

Given a state of B, that is, a temperature field T(x) and a partition
(B,B2) of B with interface I - BINB 2, the quantities

E(T,B1,B2) = XJE,(T) + Je(T),
Bi  1 (3.)

5(T,B,B 2) = 1JSI(T) + fs(T),

represent, respectively, the corresponding total energy and total
entropy.

Remark. We will consider as the underlying class of temperature fields
all functions T(x) > 0 on B with the understanding that the total energy
is o and the total entropy --o if any of the Integrals in (3.1) fall to
exist. Further, many of our statements concerning such fields will be
modulo a rearrangement on a set of measure zero; the measure, either
volume or interfacial area, will be clear from the context.

We assume (for the remainder of the section) that

the boundary is held at (constant) temperature To.

The functfonal

F(T,B,B 2) = E(T,B1 ,B2) - ToS(T,B 1,B2) (3.2)

then represents the total free-energy that would be "recorded" by an
experimenter not having access to the detailed temperature distribution in
the interior of B. We define as stable those states of B that

* minimize F(T,B,B 2). (3.3)

Combining (3.1) and (3.2) we arrive at integrals over B and I with
integrands equal'to the Gibbs functions Wi(T,T o) and w(T,To),

respectively. Thus, by (2.18) and (2.19), a necessary and sufficient
condition for a minimizer is that T = To, that l = O, and that B be
occupied by the phase with lower free-energy. Thus, by (2. 10) and the.
convention introduced in Section 2, we have the following, physically
obvious,
t Here and in what follows. I denotes summation over i 1.2.

-14-
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Transition Theorem. Assume that aB is he/dat the constant
temp erat ire To. Then the stable states are single phase with
temperature everywhere constant and equal to To, Moreover- ifT < TM)
the so/id phase Is the stable phase;- if To TM, the liquid phase /s the
stable phase- if To TM, then both phases are stable



3.2. Unbounded body under Isothermal conditions. Interfacial
Instabilities.

As we shall show in this section, the theory is more interesting when
B is unbounded. In particular, we assume that:

B is a8/ of space

We are, in effect, modelling a large region whose boundary is held at the
constant temperature TO, and it would therefore seem appropriate to
define stable states through (3.3). The problem with this definition is I
that, since B is unbounded, the integrals appearing in (3.1) will generally
fail to exist. However, for any partition (B1,B2) of B and temperature

field T(x) we can consider, in place of F(T,B, B2), the approximate I
free-energy F,(T,BtB 2) obtained by replacing B, and I by their
Intersections with a large ball 0. Then, In view of the discussion leading
to the Transition Theorem, for any such 0,

FQ(ToB 1 B2) < Fo(T,BIB 2)

for T not identically equal to TO.
Thus we are led to consider the problem (3.3) with the body

Isothermal at temperature To. In this case (3.2) takes the form

F(ToB 1 B2 ) =1jF(T o ) + ff(To). (3.4)
Bi

We still have the problem of nonexistent integrals, but this can be
circumvented provided we limit our discussion to situations in which

one of the phase regIons is bounded,

and this we shall do. Then, by subtracting the same constant K from both
bulk free-energies we can give the problem (3.3) meaning; indeed, if we
take K to be the bulk free-energy of the unbounded phase at To and
normalize the free energies In this manner, we are led to consider, Inplace of (3.4), the functional

F(D) = F*(To)vol(D) + f(To)area(bD),

where D Is the bounded phase region, while F*(To ) is the bulk
free-energy of the bounded phase minus the bulk free-energy of the
unbounded phase, both evaluated at To. In view of the discussion above,

-16-
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we define as stable those bounded phase regions D that

minimize F(D). (3.5)

Problem (3.5) Is trivial when F*(To) 0 : the solution Is D = 0. Thus

assume:

F*(To ) < O.

Let b > 0 be defined by

b -- (To)/F*(To), (3.6)

so that (3.5) has the form

minimize -vol(D) + b area(lD): (3.7)

By considering a sequence of balls with radii tending to infinity, It is
clear that the Infimum of the functional In (3.7) Is -a*, and there are no
stable phase regions However, even though (3.7) has no solution, we can
study the types of instabilities compatible with our model by studying
minimizing sequences; that is, sequences (Dn) on which the functional
In (3.7) tends to --o. Let

v1 = vol(D-)" a. = area(aD.).

Then (Dn) is a minimizing sequence if and only If (D.) is consistent with

the area-volume limit:

vn -ban-Po as n-+c.

Since b > 0, an Immediate consequence of this condition is

v-t oo as n o.

A M-,7- 0'
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Remark. By (2.11), the modulus b has the following approximate form
for uoTo -Tm small:

b - Tmf(To)/LluoI. (3.8)

Mullins and Sekerka [1963] estimate that f(TM)/L has 10-7 cm. as

order-of-magnitude. Taking this as an estimate of f(To)/L, and using the

value 10-2 given by Delves ([19741, p. 80) as a "small value" of luol/TM,
we are led to the estimate of 10-5 cm. as a reasonable "large value" of b.
(Of course, b can be as large as we wish; we simply take To sufficiently
close to TM.

The area-volume limit restricts the growth-rate of interfacial area,
but even so It Is possible to construct minimizing sequences In which the
interface exhibits interesting behavior. We now give some examples (cf.
Figure 4).

1. Dendrite spike.
Let D. be a right circular cylinder of radius r and height n, with

r independent of n and r > 2b (cf. the Remark). Then

vn - ban = O(n) (3.9)

and the area-volume limit is satisfied. Thus (Dn) is a minimizing
I sequence. We could let r = rn depend on n, as long as inf r. > 2b.

2. P!:;urite star.
Let Dn be the union of N(n) spikes, all of height n and radius r > 2b,

where N(n) is finite, but arbitrary. Then (3.9) remains valid and (D.] is a

minimizing sequence.
Z

3. Simple dendrite tree.
Let D, consist of N(n) spikes, each of~radius r, but with varying

heights which total (n), where l(n)-ooo as n-*ao. Then, for large n,

Vn = ir 2 1(n) + 0(, an = 2'Trl(n) + 0(1),V n

and the area-volume limit is again satisfied.
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* N(n) spikes of
total length 1(n);
1(n) co-

simple dendrite tree

o(n2) spikes of length n
covering a sphere of
rad ius n

prickly ball

Figure 4 Some examples of m inimiz Ing. sequences for (3.5) when the
unbounded phase Is supertherrnal.
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4. Dendrite tree with branches of varying radii.
Let Dn consist of a stalk, a dendrite spjke of radius r. and height n,

and, growing from it, np spikes arranged as follows: for each m,
m = 1,2,...,n, there are

p spikes of radius rn/m and height n/r.

Then

vn = 'nr 2np(p- 1 + 2-3 + 3-3 + + n-3) + 0(I),

a. = 2Tirnnp(p-I + 2-2 + 3-2 + +... 2) + 0(l).

For k = 2,3,

A * p-, + m-k

m=2

is well defined. Let r,-O r, with r finite or +==. Then, if

rA3/A2 > 2b,

the area-volume limit is satisfied.

5. Prickly ball.
Here Dn consists of a sphere of radius n covered with o(n2) spikes of

length n and radius r. Then,

v= (4/3)n 3 + o(n3), an = o(n3)

and the area-volume limit is satisfied.

The sequences described above furnish simple, examples of minimizing
sequences and display the richness of the underlying theory; less trivial
examples which more closely resemble dendritic behavior are easily
constructed.

To state the results of this section succintly, recall that, In the
terminology of Section 2,

F*(To) < 0 if and only if the unbounded phase is superthermal;
F*(To) > 0 If and only if the bounded phase is superthermal.
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Theorem. Assume that the body is isothermal at temperature To.
(i) Consider (3.5) with the unboundedphase superthermal Then (3.5) has
no solution. A sequence (Dn] Is a minimizing sequence if and only if it
obeys the area-volume limit and therefore has corresponding volumes
tending to infinity These conditions allow for interfacial instabilities
such as those exhibtedby the sequences descrlbed above..
(ii) Consider (3.5) with To = TM, or with the boundedphase superthermal
Then the only solution is D = 0.

Remarks.
(1) It would be interesting if one could, in some sense, geometrically

classify the sequences consistent with the area-volume limit.
(i) By definition, a phase is superthermal if It has higher free-energy at
the underlying temperature. In this sense the superthermal phase Is
unstable, and, as the theorem shows; the other phase ultimately occupies

the entire body.
(lii) Mullins and Sekerka [I 9631, working within the dynamical theory
discussed in Section 11, have established the instability of the interface
for (infinitesimal perturbations) of a sphere solidifying in a supercooled
melt. Assertion (i) of the theorem, with (Dn) the prickly ball, gives an

analog of the Mullins-Sekerka instability wiLhin the framework of the
equilibrium theory.
(iv) The Transition Theorem and the theorem above show exactly what is
needed for the interface to be unstable, namely:
(a) an infinite region, for otherwise the boundary captures the instability;
(b) the unbounded region in a superthermal state, so that it is enveloped by
the more-stable bounded region.

1Actually, in this case the empty set is a Ixii minimum of (3.5), since (3.5) is positive for ail D of
sufficiently small volume.
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3.3. Isolated body.
As a consequence of the transition theorem, stable states are

necessarily single phase when the boundary is held at constant
temperature. We now show that coexistent phases are possible when,

" instead, the body is isolated. For convenience, we return to our original
assumption that B be bounded

For an isolated body the total energy is fixed. Writing E0 for the

value of this energy, the corresponding stable states are, by definition,
those that

maximize S(T,B,1B2) subject to E(T,B,,B2) = E0. 1 (3.10)

*,; To solve the problem (3.10) we assume that the bulk and Interfaclal
specific heats are strictly positive, and that

E(O+) is finite, Ei(00) = +00; - Si(O +) = -0. (3.11)

Also, to insure that the constraint equation in (3.10) has a solution, we

* assume that

E0 > E (0+)V for at least one value of i. (3.12)

Our next result shows that (3. 10) has a solution; in the statement and
proof of this theorem we use terminology introduced In the Appendix.
Also, for convenience, we write

JM = (EI(TM)V, E2(TM)V). (3.13)

Theorem. Consider an isolatedbody Then there exist stable states
corresponding to any Eo consistent with (3.12). Moreover-

(I) Each stab/e state has constant temperature.
(II) Each two-phase stable state has minimal interface; hence the
interface is a surface of constant mean curvature which meets B
orthogonally.
(IIi) For f(TM) sufficiently smal there is a nonempty interval
J cJm such that for Eo J all stable states are two phase.

['7 Proof Our proof will proceed in three steps.

Step I Proof of (i). Fix B1, B2 (and hence 1), 1let

v vol(B), a area(I),
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and consider (3.10) as a problem for T. Let us agree to call a temperature
field T: admissible if T is consistent with the energy constraint In
(3.10); phasewse constant If T is constant on B, constant on B2, and
constant on I. Further, for each temperature field T define numbers
T1 >  and T > 0 by

E(Ti)v i = JEI(T), e(Ti)a = Je(T).
15f I

(Because of the strict monotonicity of E(T) and e(T), this definition is
valid.) Then, In view of (2.20),

J(Si(T) - Si(Ti)) = J{Si(T) - Si(T i) - T'I((E,(T) - Ei(T))) ( 0

if T is not identically equal to T, on B,; a similar argument applies to
s(T) on I. Assume that T is admissible, but not phasewise constant.
Then, by the above Inequalities, the p-hasewise-constant field with values
T, on B, and T, on I Is admissible and has total entropy strictly larger
than that for T. Thus

the set of stable states Is contained in the set of
states with phasewise-constant temperature fields. (3.14)

Continue to hold B, B2 (and hence I) fixed. Consider the problem,
motivated by (3.14), of finding numbers T, > 0 and T, > 0 that

maximize SI(T 1 )V1 + S2(T2)v2 + s(T)a
(3.15)

subject to EI(T 1)v1 + E2(T2)v2 + e(T)a - Eo.

In view of (3.11) and the continuity of the functions appearing in (3.15),
this problem has a solution and, using a Lagrange-multiplier, it is a simple
matter to verify that solutions have T1 = T2 = TV Thus

0

the set of stable states is contained in the set
of states with constant temperature fields, (3.16)

which establishes assertion (I) of the theorem.

Step 2: Existence of stable states and proof of (II). Consider the problem
of finding numbers

* -23-
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T > O, 0 1 v i V, a i amin(v) (3.17)

that solve the problem

mInimize W(av,T;To) = WI(T,To)v + W2(T,To)( I -v) w(T,To)a
(3.18)

subject to E1(T)v + E2(T)(1-v) + e(T)a =E ,

where amin(v) is the minimal-area function defined in the Appendix, W,

and w are the Gibbs functions (2.17), and To > 0 is arbitrary, but fixed.

Because of (2.17) and (3.16), every stable state (T,B 1,B2) yields a solution

(a,v,T) of (3.18) with

v = vol(Bd, a = area(I); (3.19)

conversely, every solution (a,v,T) of (3.18) generates - in the obvious
sense - a stable state provided we can find a partition of B consistent
with (3.19). But by Theorem 1 of the Appendix, such a partition can always
be found if

a = atn(v). (3.20)

Thus to complete Step 2, it suffices to show that (3.18) has a solution, and
that every solution obeys (3.20).

Because of (2.17) and (3.11), w(T,T o) is bounded below, while

Wi(0+,T 0 ) = +0, Wi(+oa,T 0 ) = +a*;

thus (3.18) has a solution. Let (a,v,T) be such a solution. Then (a,v,T) Is
a solution for any To > 0. Choose To > T. Assume that a > amin(v). Then,

.~.. because of the strict monotonicity of the internal energies, we can find
numbers a* and T* such that T < T* < To and amin(v)< a* ( a; and such

that (a*,v,T*) satisfies the constraint equation in (3.18). Further,
because of (1) of the theorem containing (2.19),

W(a*,v,T*;To) < W(a,v,T;To),

which contradicts our assumption that (a,v,T) solve (3.18). Thus (aIv,T)
obeys (3.20).

-24-
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Step 3 Proof of (iii). Let

Wm - W1(TM,TM) - W2(TM,TM), am - sup (amin(v): OmvV},

and let T, = Ti (Eo) be the unique solution of

E (T1)V = Eo.

Then, as Is clear from Figure 5 and the properties of the Gibbs functions,
there is a nonempty interval JcJm such that for Eoej,

W1(T (Eo),TM) > Wm + f(TM)amX 2 W(amin(V),V,TM;TM). (3.21)

*The left side of this inequality is the total Gibbs-energy (3.18)I (with To

TM) for the two admissible single-phase states. On the other hand, for
0 ( v ( V the right side is the total Gibbs-energy for a (not necessarily
admissible) two-phase state at temperature T = TM. Thus, if we can find
a v E (O,V) that satisfies the energy constraint (3.18)2 with T = TM, we
will have exhibited an admissible two-phase state with lower total
Gibbs-energy than.the two admissible single-phase states, so that the
solution of (3.18) is necessarily two phase. Thus to complete the proof we
have only to find a v E (O,V) such that

El(TM)v + E2(TM)(1-v) + e(T)amin(v) = E0. (3.22)

*_ But since EOf.JM, and since the left side of (3.22) varies continuously
from E2(TM)V at v =O to EI(TM)V at v =V, we may use (3.13) to

conclude that such a v exists. 0
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Figure 5. Internal energies E(T) and Gibbs functions WI(TTM) as
functions of temperature T.
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PART 11. 6ENERAL THEORY.

4. Preliminaries.
We now allow the interface 1(t) and (hence also) the phase regions

B(t) to depend on the time t. We use the following notation (Figure 2):
n(x) is the outward unit normal to B; m(x,t) is the outward unit normal
to B1(t) on 1(t); v(x,t) is the normal velocity of the interface In the

direction m(x,t); fix,t) is the sum of principal curvatures of 1(t)
with L > 0 when the center of curvature lies toward B1; cot(m,n) Is the
cotangent of the angle between m and n:

cot(m,n) - p/(1-p 2 )1/2, p - m-n. (4.1)

For any field g(x,t), let g(,) denote the limit of g as the interface is

* approached from points of BI, and let

[g]" 9(2) -g() (4.2)

denote the jump in g across I. We then have the standard Identity

(Ig ) go + Igo - J[glv (4.3)
1 e a2  1

A less trivial result holds for integrals over the interface. Let g(x,t)
be defined for each x In 1(t) and all t. Choose a time B and a point y
in I(B), and let x(t) denote the curve that passes through y at time B
and has
~XO(t - v(xMt,t)m(x(t),t)

for all t. Then

" I A(YB) - (d/dt)g(x(t)'t)lt,,, (4.4)

* represents the time-derivative of g following 1.
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Transport Theorem. 1

(Jg) = Ov+ Ig - Jgvcot(m-n). (4.5)

The first term on the right side of (4.5) represents a change in the
., integral of g due to the curvature of the interface, the second term gives

the change due to changes in g, the third term represents a flux of g
across the boundary of B.

An immediate consequence of (4.5) Is the transport theorem for area

area(I) = fLv - Jvcot(m-n). (4.6)
I a!l

Remark. By (4.1), cot(m-n) = @o when m = !_.n. Thus for (4.5) and (4.6) to
be valid It is necessary that

on al: v = 0 when m=±.n, (4.7)

and that this limiting value of v be approached sufficiently rapidly from

the interior of I. This condition will be a tacit asumption in what
follows.

Let S denote an arbitrary subsurface of aB, let r> O, and let

Dr =(x: x=y-Bn(y), yE S, O 13r),]1~

Sr ={x: x-y-rn(y), yES).

Then Dr and Sr, respectively, are the region and surface obtained by
r-transporting S along the normal. Here we will always write fr

for the outward unit normal to Dr on Sr (Figure 6).

. 1Willams 119051. In this connection see also Scrtven [19601. Moackel 119751.
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r

Dr

Figure 6. The region Or and surface Srobtained by r-transportlng S
along the normal.
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5. First two laws. Additional constitutive assumptions.

To discuss the thermodynamics of B we allow the functions E(x,t),
S(x,t), T(x,t), e(x,t), and s(x,t) to depend on the time t, and we introduce a
new field: q(x,t), the heat flux per unit area.

Let D be an arbitrary fixed subregion of B, and let

ID = In D. CD -ID\6B, (5.1)

so that b1D is the closed curve which marks the intersection of I with

6D, while cD is the portion of this curve which lies in the interior of B.

The internal energy of D is given by

JE + le,
D iD

Also, because of the (possible) motion of the interface relative to D,
there is a flux of interfacial energy across the boundary of D (and out of
D) of amount

Jevcot(mn),

CD

where n is the outward unit normal to D, while cot(mrn) is defined in
(4. 1) (cf. Figure 7). We integrate over cD, rather than aIo, since there is

no loss of interfacial energy across the boundary of B. Finally, there is a
flux of heat into D of amount

-Jqn.

In view of the above discussion, the first law for D takes the form:

(E + le )+ levcot(m'n)=- fqn. (5.2)1-2
D ID CD  ao

-, Similarly, D has internal entropy and there is a flux of interfacial
entropy across the boundary of D. Also, the flow of heat is accompanied

., .. by a flux of entropy of amount

1Fernandez-Diaz and Williams 11979). An earlier version is contained in the work of and Moeckel
119751, but Moeckel introduces a somewhat artificial material description of the interface. Other
discussions of the first law are given by Fisher and Leltmnan 119681, Murdoch [ 19761, Wollklnd [ 19791,

0 and Rogers 119831.
2 Surface tension, in our theory equal to the interfacial free-energy, does not enter the first law;
indeed, since our model is rigid, bulk and interface forces do no work.
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- T-q-n.
aD

We therefore write the second law for D as

(IS + Is + Isvcot(m-n) 1 - JT-lq'n. (5.3)
U D CD aDD Do

The term

siP(Dy theI reqimn tha t W) O + JTlq-n (5.4)D 'o O

represents the entropy production In D, and the second law (5.3) Is
simply the requirement that P(D) 0.

In addition to the constitutive assumptions Introduced In Section 2.1,
we assume that the heat flux q is governed by the constitutive equation

q = -ki(T)gradT (5.5)

*in each phase region Bi, with

(A7) conductivities ki(T) > 0.

Concerning the interface I, we assume that

(A8) T is continuous across the Interface, (5.6)

so that the interfacial temperature Is defined unambiguously. In addition,
we assume that the interface produce no entropy.

(Ag). if the volume of D tends to zero, then P(D) tends to zero. (5.7)

-
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6. Partial-differential equations. Jump conditions.
In this section we derive consequences of the requirement that the

first two laws (5.2) ano (5.3) be satisfied in every subregion D of B
We assume that the fields E, 5, and T are smooth away from the

Interface 1. Then (5.2) applied to-an arbitrary region D lying in Bp in

conjunction with the constitutive equations (2.1) and (5.5), lead to the
classical partial-differential equations

E1(T) Z -divq, q a -k(T)gradT, (6.1)

or equivalently, by (2.3),

C,(T) T* - div(k(T)gradT) (6.2)

In B, for all time.

Our next step is to derive appropriate jump conditions across the
Interface. Although the temperature Is continuous, the fields E, S, and q
will generally suffer Jump discontinuities across the Interface. We also
-allow q(x,t) to become infinite as x approaches I(t); in fact, we

0 assume the existence of a scalar function O(x,t) on aI(t) such that:
given any subuurface S of aB, If Sr Is obtained from S by
r-transporting S along the normal, then

Jq-nr -- Jq-n + fO, f'-q-nr -I T-lq-n + JT'TQ (6.3)
Sr s Snal Sr  S snal

as r-,0.
The next result is central to our investigation.

Interface Theorem. The interfacial balance laws

-v[E] + vke, eA = -[q]'m, (6.4)1

-v[S) + vLs + sh = -T'I[q)-m (6.5)

ho/don I [oral/time. The contact condition

vm-n - O. (6.6)

hlods on al for all time

*Proof Note first that, by (6.1) and the identity E(T) =TS,(T)8,

tcf. Moeckel (1975). Fernandez-Oiaz and Williams 119791.
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Si(T)= - div(T-'q) + r, r = -T 2q-gradT (6.7)

in Bi for all time.

Next, the laws (5.2) and (5.4), for an arbitrary subregion D of B,
have the form

(JG + Jg + Jgvcot(m-n) = -Jpn + R(D), (6.8)
D CD aD

with R-O for (5.2) and R-P for (5.4), so that in either case R is
consistent with (5.7). By (4.3) and (4.5), the left side of (6.8) is equal to

IGo * JG + J(gv + g" - [G]v) - Jgvcot(m-n), (6.9)
I D2 ID SD

where Di is the portion of D In B, while

": SD = IDn aB

is the portion of aID in contact with aB.

Assume first that 6D does not touch aB. Then we may use (6.1), (6.7),
and the divergence theorem to conclude that

& = -Jpn + Z(D), (6.10)
Di  0 i

where Z(D) tends to zero with the volume of Dr, Further,

J[p]m = - J - I )(p-n), (6.11)
ID 8 aDI aD2

and, since sD is empty, if we combine (6.7)-(6. 11) we find that

Jg(v + gA - [G]v + [p]m] = R(D) - Z(D,) - Z(D2). (6.12)

By (5.7), if we shrink D to the interface, the right side of (6.12) tends to
zero; since ID is essentially arbitrary, this yields (6.4) and (6.5).

Now choose a.subsurface S of aB, apply (6.8) and (6.9) to the region
Dr obtained from S by r-transportlng S along the normal, and let r

approach zero; by (5.7), (6.3), and the fact that S is arbitrary, the result
is

evcot(m-n) -Q, svcot(mn) - T'Q, (6.13)

so that, by (2.13),

f(T)vcot(m-n) = 0,
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which yields (6.6), since f> 0. 0

Remarks.
(i) It is clear from (6.6) and (6.13) that .0 - 0, so that (apart from a

possible jump discontinuity) the heat flux isnonsingular along 61.
(i) We could also allow for surface energies ei and surface entropies s,
between the phases and aB. Were we to do this, then, assuming e, and s,
are constant, (6.6) would be replaced by the more general condition

v~f1(T) - f2(T) - (mn)(T) - 0, fI(T) = ei - Ts,

on al. Moreover, in this case the heat flux isgenerally singular on aI
with

0 =-v(e, - e2 - (m-n)e(T)](l - (m-n) 2)- 1/2 .

As an immediate corollary of (6.4) and (6.5) we have, for v w- 0,

* Balance of free energy. On 1, for alltime,

[F] = If, (6.14)

or equivalently

T = ([E] -ke)/([S] -fs). (6.15)

Proof By (2.13) and (44), eA = TsA; thus if we eliminate the heat flux
from (6.4) and (6.5), we arrive at (6.14), and solving this for T yields
(6.15). 0

Remarks.
* () If e-s=0, which is the assumption underlying the classical theory of

melting, or If L=0, then, as a direct consequence of (6.15),

T [E]/[S] (6.16)

0and

[F] = 0. (6.17)

* Thus, granted the assumption that the free energies F(T) coincide at
exactly one temperature, we find, as a consequence of the laws of
thermodynamics, that in the absence of interfacial structure the
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free-boundary condition (6.15) must necessarily reduce to the classical
condition

T -TM onl 1.

(ii) Even though the notion of force does not enter our theory, we can
define pressure by noting that, since Fi(T) is the free-energy per unit

volume, VF(T) is the free-energy a region of volume V would have if

occupied solely by phase i; differentiating this expression with respect to
volume yields the negative of the pressure.

P1 --F1(T).

A similar argument identifies f(T) with surface tenson o. With these
definitions (6.14) is the Gibbs-Thompson relation

P -P2

It must be emphasized that our derivation of (6.14) makes no use
whatsoever of the notion of equilibrium.
(iii) It is not difficult to show that

P(B) = I ki JT-21gradTI 2 ,

so that, as would be expected, the entire production of entropy is due to
heat conduction.

We close this section by listing what might be considered a complete
system of field equations and free-boundary conditions for the general
nonlinear theory: namely, (6.2), (6.4), (6.6), and (6.15). We do not need

. (6.5), since, granted (6.4), the conditions (6.15) and (6.5) are equivalent.
The system is, then,

C (T) To = -divq, q = -ki(T)gradT In B, (6.18)

T - ([El - ke)/([S] - Ls), [q]-m v[E] - ve - e" on 1, (6.19)

, vm-n - 0 on aI, (6.20)

r with E, S, e, and s given by the constitutive equations (2.1), (2.2), (2.12),

and (2.13).

'6ibbs [1878). Eq. (500).
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7. Boundary conditions. A bound. on Interfacial area.
Throughout this paper we will be concerned with the following

boundary cond itions:1

(I) Isolated boundary:

q-n -0 on MB; (7.1)

00i Isothermal boundary:

T - To on. aB (To constant). (7.2)

These boundary conditions, when combined with (5.2), (5.4), and (6.6),
yield the

Global. growth conditions. If the boundary Is Iso/ateg

(JE + le 0,(73

* (IS + Is)*- P(B) 1 0.

If the boundary Is Isothermal or isolated,

(J(E-T0S) + J(e-Tos) r~ i -T0P(B) 1 01 (7.4)
B 1

with the constant To 0 arbitrary when aB is isolated

Remark. Note that the variational characterizations (3.3) and (3. 10) can
be deduced from the above theorem under the assumption that each process
consistent with boundary conditions (7. 1) or (7.2) approach a stable
equilibrium as t-*oo.

If we integrate (7.4) from the Initial time t-0 to an arbitrary time,
We conclude, with the aid of (2.19), that

F1(TO)vol(B1) + F2(T0)vol(B2)* f+T0 area(I(t)) i VMS)

F(0) - the initial-value of J(E-TO5) + J(e-Tos).
a I

IWO do not mm to Imply thit these are the only boundary conditions or Interest. In rid, here and In
susque sections. il results for an Isothermal boundary are valid without chang for the boundary
condition: TinT0 on Ap . -a 0 on A2, with Ai cmplemfentary (nontrival) subsets or as.

-37-

PL



*e Thus, letting

Fmln(TO)- mtn(FI(To),F 2(To)), V - vol(B),

we are led to the following

Bound on InterfacIal area. Assume that the boundary Is isolated or
isothermal Then for all time t,

area(I(t)) f(To)(-I?(O) - VFmin(To)) ,  (7.5)

with To arbltrary when 6B Is Isolated

Note that, in addition to (8.5), we have the estimate

VFmin(T O) i J(E-ToS) K F(O).
B

0 Intuitively, one type of dendrite might be a "set" with vanishingly small
volume, but nonzero surface area. The following definitioni makes this
Idea precise.

We say that phase I approaches a dendrite with null volume if:

I im vol(B,(t)) = 0, 1im inf area(l(t)) > 0. (7.6)
t4 .t*

Remark. The inequality (7.5) asserts that area(l(t)) is bounded
uniformly in t by a constant which depends only on: (i) the bulk and
interfacial free-energies at To; (ii) the initial data. At first glance it
might seem that this bound on interfacial area precludes the formation of
an interface which is too wild. But this is not so. Indeed, dendrites with
null volume are completely consistent with (7.5). Moreover, as we shall
see, the theory discussed here will predict such instabilities, but only on
a very small length scale.

,=.

1A more gwnesi deinition would use the limit t- t* with L" rwito or infinite.

,-3 '-
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8. Ouasi-static theory.
8.1. Basic equations. 6rowth conditions.

In this section we attempt to model situations in which the interface
moves slowly compared with the time scale for heat conduction.1 The
constitutive hypothesis underlying our model is that - in each of the
phases - both the bulk energy and the bulk entropy are constant. Since the
two phases coexist at the interface, the constant values of energy and
entropy should be the values in the real material at the transition
temperature. Thus, by (2.5) and (2.8), and since there is no loss of
generality in allowing the energy and entropy to vanish in phase 1, we
base our model on the constitutive assumptions:

E1 -O, E2 ' L,

(8.1)
S1 = 0 , S2 =L/Tm,

with L> 0 the latent heat (2.5). In addition to (8.1), we suppose that 2

e, s, and k, are strictly-positive constants; f(TM) > 0. (8.2)

- Remark. By (8.1), the bulk and Interfacial specific-heats are identically
zero. Note also that, because of (8.2), the resulting interfacial
free-energy has the form f(T) - e - Ts and is negative for large values of
T. It is therefore tacit that - for this model - we are dropping
assumptions (A3) and (A6).

For convenience, we shall generally refer to

u -T - TM (8.3)

as the temperatur. This definition and (8.1 ) allow us to write the
interface condition (6.19)1 in the form:

* where h and a are capillarity lengths defined by

h - TM f(TM)/L, a - TMs/L. (8.5)

* 1This assumption Is discussed by Mullins and Sekerka (1963).
2Alhough we make tmm assumpti6ns for convenience only, we may Infer from remarks of Adam
119301, p. 20 that for many liquids the assumptions concerning e and s are reasonable over a wide

'U range of tmperatures.
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Thus, by (6.18)-(6.20), we base our model on the equations:

,&u - 0, q = -kgradu In B,, (8.6)

u= - hk/(I-aL,), [q]-m = (L - [e)v on 1. (8.7)

vm-n = 0 on al. (8.8)

Remarks.
(1) By (8.2), (8.3) and (8.5), T computed usIng (8.7), has the unfortunate
property:

Ti0 for L/e.fkgL/(TMs);

hence this range of curvatures les outside the range of valdity of our
model Mullins and Sekerka [19631 estimate that f(Tm)/L has 1O-7cm. as

* order-of-magnitude. If we take this value as an estimate for e/L, we see
that this range of curvatures corresponds to radii of curvature < 10-7cm.

0(i) It is not difficult to verify (by simply reversing the steps of the
arguments given In Section 5) that solutions of the system (8.6)-(8.8) are
consistent with the first two laws as presented in Section 5.

In view of the preceeding remark, under appropriate boundary
conditions solutions of (8.6)-(8.8) satisfy the growth relations (7.3) and
(7.4) as well as the area estimate (7.5). We can, however, deduce more
interesting estimates. We begin by writing the isothermal
boundary-condition (7.2) in the form

u - u0 on 6B (uo - To - TM). (8.9)

Next,

vol(B 1)" = -vol(B2)", (8.10)

and, by (8. 1 ) and (8.3), for g = e or s,

(JE )o = Lvol(B2)° = TM( IS ), (Jg ) = g area()B B !

Therefore, If we write

= TMf(To)/L, 3 - e/L

* -40-
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(so that B > 0), and assume that g > O,ln the case of an isothermal
boundary, then (7.3) and (7.4), with To M TM in the case of an Isolated
boundary, yield the following

Growth conditions.
(1) For an isolated boi7dary,

vo 132)e + Darea(D'* = 0, area(1)" t 0.(8 I)

(11) For an isothermal bondry,

uovol(B 1) + Iarea(I) O. (8.12)

Appropriate Initial conditions for the system (8.6)- (8.8) are:

BI(O) - Boi, (8.13)

with (B13002) the initial distribution of phases. We shall designate by
Problem 05 the initial-value problem defined by (8.6)-(8.8), (7.1) or
(8.9), and (8.13).

Ouestions.
1. What is an appropriate weak formulation of Problem OS?
2. Is Problem OS well posed?

The growth conditions for OS yield a uniform bound on interfaclal area,
and hence Imply .that the Interface cannot become too wild. However, as
we have remarked In Section 5, estimates of this nature do not, a-priori,
rule out dendrites with null volume. To discuss this possibility, let

Eo = vol(B2(O)) + Barea(1(0)), (8.14)

so that Eo is essentially the Initial energy. Then we have the following
mathematically trivial, but physically Interesting, consequence of the
growth conditions.

Corollary. For an isolated boundary, if the initial energy is small enough
* (Eo < V), then dendrites with null volume cannot form
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Proof In view of (8.1O) and (8.11),

vol(B2)0 2 0,

so that for a dendrite with null volume to form, vol(B2 )-)V. But by (8.11)
and (8.14),

vol(B 2(t)) i Eo,  (8.15)

and the desired conclusion follows. 0

Remark. By (8.14), for B1(O) a sphere of radius r, the condition Eo ) V
Is equivalent to r< 30. Using the Mullins and Sekerka [1963] estimate of
107cm. as an order-of-magnitude for 13 = e/L, we see that for the
formation of dendrites as discussed above we must have r < 1 O-7cm.

*
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8.2. Equilibrium In the quasl-static theory.
We now turn to a discussion, mostly formal, of the equilibrium behavior

of solutions to Problem OS. Consider, then, a solution of Problem OS and
suppose that

as t--, an equilibrium state (u, B .,B2.) exists. (8.16)

Let I. denote the Interface corresponding to (B,.,B2. ). For convenience,
we consider separately the two types of boundary conditions.

A. Isolated boundary.
Let Eo 10 be the initial energy (8.14). Then by (8. 10) and (8.11 ) It

seems reasonable to expect that (8,.,B2.) Is a solution, or at least a
local minimizer, of the variational problem: minimize

area(I1)

- subject to the constraint

vol(B2.) + Barea(I,,) EO.

The solution of this variational problem, W say, is given In Theorem 2 of
the Appendix; the results are:
(i) If Eo K V, then Wi has a solution. Moreover, every solution will have

minimal interface, and hence will have an Interface of constant mean
curvature which meets aB orthogonally.
(Ii) If E0 > V, then WO has no solution In the standard sense. Minimizing

sequences (B1n, B2, I,) will have

vol(B) -- 0) area(Ia) -- (Eo- V)/13) 0. (8.17)

Remark. By our convention (Section 2), phase I is the solid phase. Thus
if the initial "energy" is large enough, then, for each minimizing sequence,

0 the region occupied by the solid phase approaches a *set" which has zero
volume, but non-zero boundary-area, a result which, by (7.6), seems
indicative of the formation of dendrites. Note that this phenomenon does
not arise In the general theory (cf. the theorem of Section 3.3). In the
quasi-static theory the bulk energies are constant, and thus sufficiently
large energies can be attained only with the formation of a large
interface; this Is the reason for the behavior specified In (ii) above.

-43-
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On the other hand, in the general theory the bulk energies increase to
infinity with temperature, and thus large energies are attainable without
creating a large interface.

B. Isothermal boundary.
By (8.12) the equilibrium configuration should

minimize uovol(B 1.) + iarea(I=).

This variational problem has an obvious solution. For uo= O, BIf Is

either B or 0. Further, since

vol(B,.) + vol(B2.) = V,

for uo , 0, B,. Is either B or 0 according uo (0 or uo > 0. Thus,

granted the validity of this variational problem, B is ultimately single
phase, the solid phase prevailing If uo 0 0, the liquid phase if uo > 0. As

would be expected, these results are consistent with the Transition
Theorem (Section 3. 1).

I

V

* -44-



8.3. Ouasi-static theory with B unbounded.

We now allow B to be all of space, but assume that

one of the regions B(t) Is bounded for all t (8.18)1

(cf. Section 3.2). Then for B2 bounded the constitutive equations (8.1)
lead to finite values for total energy and entropy. This will be true also
for B, bounded provided we stipulate that for this case (8.1) be replaced

* by

El a -L, E2 aO,

S, = -L/Tm, S2=0.

In addition, we write r4-xI and replace the boundary conditions by

either of the following conditions:

(I) body Isolated at Infinity:

q(x,t)-4O as r-Poo,

(ii) body Isothermal at Infinity:

u(x,t)-u 0 as r-* a.

Then, since u is harmonic in a neighborhood of infinity, we have the
following estimates as r-*oa:

u(x,t) - g(t) + O(r-1 ), q(x,t) - O(r"2) if isolated at infinity,

u(x,t) - uo + O(r'), q(x,t) - O(r2 ) if isothermal at infinity.

These estimates allow us to establish (7.3) and (7.4) under the present
hypotheses: we simply replace D in (5.2) and (5.3) by a large ball whose
radius is ultimately allowed to tend to infinity. Using the extended

*versions of (7.3) and (7.4), it is a simple matter to verify the following:

1'Then the analysis or Sections, 5 and 6 extend; we need only require that the first two laws hold in
every bounded subregion of B. Note that the contact condition (6.6) Is here vacuous.
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6rowth conditions for an unbounded body. Let Bi be thebounded
*' phase region

(0) If the body Is isolatedat infinity, then

(- )Ivol(Bi)o + Barea(I) = 0, area(1)O 0. (8.19)

() /f the body is isothermal at infinity, then

I- 1i+ uI oI (81)" + Igarea()" 10O. (8.20)

4
-46-
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8.4. Equilibrium with B unbounded.
We assume that (8.16) is satisfied and, for convenience, consider

separately the two conditions at infinity.

A. Body Isolated at Infinity.
For B, the bounded region let

SEo- the initial-value of (-1)'vol(B)+ Barea(bB), (8.21)

so that, as before, Eo is essentially the initial energy. Here we have used
the fact that

I - aB.

For convenience, write

' 'D - Bift

for the region occupied by the bounded phase at equilibrium. Then by (8.19)
it seems reasonable to expect that D is a solution of the variational
problem:

minimize area(D)
(8.22)

subject to (-l)'vol(D) + 8area(aD) = EO.

Case 1. Liquid phase bounded ( - 2).
The solution is a sphere consistent with the constraint.

-': Case 2. Solid phase bounded ( = 1).
In this case (8.22) has the equivalent formulation

minimize vol(D)
(8.23)

subject to -vol(D) + Oarea(OD) - E0.

.- For E - 0 the solution is D - 0. For E( 0 the solution is a sphere

consistent with the constraint. For Eo > 0 (8.23) has no solution;
: •minimizing sequences (D.] have

vol(D,)- 0, area (aDf)+ Eo/B.
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Again we have an indication of a dendrite with null volume. If we consider
an initially-spherical solid of radius r, then, by (8.21), for Eo > 0 it is

necessary that r < 38 (cf. the last remark in Section 8.1).

B. Body isothermal at Infinity.
Case I. Bounded phase superthermal at uo.

In view of the definition of the term "superthermal" (cf. Section 2.1),
for this case either i - I and uo > 0, or I - 2 and uo <0 . For either

(8.20) leads to the conclusion that, at equilibrium, the bounded phase
should

minimize luolvol(D) + parea(D);

hence D = 0. Thus a superthermal bounded phase should ultimately
disappear.
Case 2. Unbounded phase superthermal at uo.

Here the bounded phase should

minimize -luolvol(D) + .iarea(D). (8.24)

This problem is no different than (3.7) (provided we identify1 b with
S/Uo), and our conclusions may be inferred from (i) of the theorem of

Section 3.2. In particular, (8.24) has no solution (other than a local
minimum at D = 0); and (Dn) is a minimizing sequence if and only if it is

consistent with the area-volume limit and has corresponding volumes
which tend to infinity. Examples of minimizing sequences exhibiting

i Idendritic behavior are given in Section 3.2. I

*€ 9

1 Note that, by (3.8), the constant b of Section 3.2 is ipproxinately p/luoI; in fat. tor bulk

free-energies which ae linear in T. which is the case here. the relation is exact.
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PART I1. THEORIES BASED ON THE CAPILLARITY RELATION.

9. Approximations. The capillarity relation.
By assumption (A4), FI(T) - F2(T) when, and only when, T - TM; thus,

appealing to (6.17) and (2.5): if Interfacial energy and entropy are
neglected, or if the interface is flat, then

[E] = L and T = TM on I. (9.1)

If interfacial energy and entropy are not negligible, then the interfacial
temperature T will generally not equal the transition temperature, but
instead will depend - through (6.15) - on the jumps in energy and entropy,
as well as the curvature, energy, and entropy of the interface.

We now use (6.14) to derive a simple approximation for the interfacial
temperature which is valid when the interfacial energies are small. More
precisely, we assume that

f(T) = &tf(T), e(T) = deB(T) (9.2)
00

with d a small parameter. By (6.14),

F2(T) - FI(T) = kLf(T). (9.3)

Clearly, (9.3) has the form g(Td,)=O and for =O has the unique solution
T=TM. Further, the partial derivative of g with respect to T at (TM,O)

Is Sl(TM)-S 2 (TM), which, by (2.8), is nonzero. Thus, by the implicit

function theorem, (9.3) has a unique solution T=T(d) near dS-O, and
TUTM.+O(c,). We therefore write

u = T - TM

and expand (9.3) about d-0; using (2.7) and the fact that u=0(&), we are
led to the following estimate, valid to within terms of 0(d2):

0u = -h (9.4)1

with h=O(d) the capillarity length2 (8.5),. We shall refer to (9.4) as the

capillarity relation; this relation is central to all of what follows.

SI Cf. Delves 119741 for a derivation or (9.4) based on equilibrium thermodynamics. In Delves's
derivation. as well as in all others of which I an aware. the curvature enters through the classical
relaton lp)4 " with [p) the Jump in pressure across the interface. a quantity irrelevant to the theory
discussed here.
2 But here f is arbitrary, not necessarily or the rorm assumed in Section 8.
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Our next step is to derive a corresponding approximation to the
interfacial balance-law for energy. Trivially, (2.5) and (9.4) yield, to O(),

[E] =, L, (9.5)

and combining (9.5) with (6.4) leads to the following interface condition
for energy:

[q]-m z Lv, (9.6)1

again valid to O().

The remainder of the paper will be concerned with models based on the
approximate Interface conditions (9.4) and (9.6).

Remarks.
(i) In the foregoing analysis the parameter d always appears in the
product da, and therefore it is tacit in our scaling that dk be small.

* • Thus equations based on the capillarity relation (9.4) are probably not
valid for problems involving large curvatures'
(ii) The approximation (9.6), to terms of 0(S2 ) rather than O(W), is

q .-m = (L + kh(C - C2) -kelv, (9.7)2

provided e is constant. This relation with the term ke omitted is common
in the literature. However, the terms W(C1 - C2) and k are both 0(4),

and to neglect one without the other is inconsistent. In any event, since
L=0( ), (9.6) seems to be the most rational approximation to use in
conjunction with (9.4), except possibly when the temperature away from
the interface (for example at the boundary) is not close to TM.

• 1Also, as Rogers (1983] has noted, the interfacial temperature as given by (9.4) can have negative
values for sufficiently large curvatures; in fact, for k ) L/f(TM). (f. (i) of the remark following

(8.8).)
2Cf. Wollkind (19791, who derives (9.7) assuming constant specific heats.
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10. Quasi-linear theory.
10.1. Basic equations. 6rowth conditions.

We now consider a model based the interface conditions (6.6), (9.4), and
(9.6) In conjunction with assumptions of.constant specific heats C1>O and
constant conductivities k>O. Thus, writing

u"T -T.,

we are led to the system

Ciu kiAu, q a -klgradu in B, (10.1)

u -- h [q-m -Lv on 1, (10.2)

.*vmii=-0 on a1, (10.3)

for all time. As before, we refer to u as the temperature. Also, in view
of (2.7) and (8.5), it Is natural to suppose that

L>O, h>O. (10.4)

Remark. The system (6.18)-(6.20), or the simpler version (8.6)-(8.8),
have the advantage of being consistent with the first two laws. Therefore,
for an Isolated boundary these systems have a natural conservation law,
balance of energy, and a natural Liapunov function, the total entropy; and
similarly for an Isolated boundary. Because of this we were able to obtain
estimates such as the bound (7.5) on Interfacial area. On the other hand,
because of the approximations involved, the system ( 10.1 )-( 10.4) is, In
general, not consistent with the second law (5.3). Therefore, results such
as the global growth conditions (7.3) and (7.4) and the area bound (7.5)
must be established anew.

Our discussion of (10.1 )-(10.4) Is based on the following pair of
* Identities:

-Lvol(B 2)- 1JCu& = q'n, (10.5)
ae

-hLarea(I)- IfuC u LIgradul ,2 + Juqn, (10.6)
14 1
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where 11-11, is the norm defined by

LIIpII 1 2 - k1J~pI 2 + k2f IpI2 . (10.7)
51 B2

To prove (10.5) and (10.6), note first that (43) with g the
characteristic function for B,, (4.6), and (10.3) yield

area(I) - JNV vol(Bg.* - Jv - - vol(B2) .(10.8)

I I

Note also that

Jq-gradu L LI Igradul 112 . (10.9)
B

By (10. 1). ( 10.2). (10.8), (10.9), and (6. 11)

-Lvol(B 2) = f[q]-m - Jqn +ifCua,
I aB BI (10.10)

-hLarea(I) - Ju[q]-m - -Jw-gradu + Juq-n + IuC1Lr,
I B aB B1

which yield (10.5) and (10.6).
Equations ( 10.5) and ( 10.6) simpl ify when

C. (10.11

Indeed, since u is continuous, (10.5) and (10.6) reduce to

(vol(B2 )+ CJu)* - Jqn , (10.12)
B as

(h area(I) + (C/2)Ju2], I -I gradulI1 2 - V'Jfuqn, (10.13)

with

C -C,/L. (10.14)
0

T hese I dent It Ies and the -boundary cond It.ions (7. 1) and (7.2), w Ith the
latter written in the form (8.9), yield, as a consequence, the relations
listed below; there V Is the total/volume, while umn um(t) is the

* ~~Mean tempeau.

V -vol(B), um= \r'Ju. (10.15)
B

* -52-
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6rowth conditions. Assume that C1 I- C2 .

(1) For an isolated boundary,

(vol(B2) + CVUm) - 0, (10.16)

(h area() - UmVOl(B 2) + (C/2)1(U-Um) 2)} 0 . (10.17)
B

( I1) For an isothermal bowday

(h area() - uovol(B2) + (C/2)(U-uo)2]J 1 0. (10.18)
* B

Proof Consider fIrst an Isolated boundary. Then (10. 12) and (10.13)
reduce to ( 10. 16) and

(harea(I) + (C/2)Ju 2 ) = -IlgraduI1
2  (10.19)

B

By (10. 15),*. :,

um(Ju)*" J U u = .(UmU) - UmJu = 1 /2)(2(umu)* - (um2 )*}, (10.20)'"B B B B B

and if we multiply (10.16) by um, subtract the resulting equation from

(10. 19), and use (10.20) and the fact that grad um = 0, we arrive at

(10.17).
Consider next an isothermal boundary. Then multiplying ( 0. 12) by u0

and subtracting the result from (10.13), we conclude, with the aid of
(10.14), that (10.18) holds. 0

Remark. In(1O.17)and(10.18)the 1 0 maybereplacedby

= -IIgrad(u-um)I 12 O. (10.21)

* Appropriate Initial conditions for the system (10.!-(0.3) are:

u(x,O) = go(x) for x in B, Bi(O) = Boi, (10.22)

* with go the initial temperature-distribution and (B0 11B02) the initial
distribution of phases. We shall designate by Problem OL the
initial-value problem defined by the field equations (10. ), the
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free-boundary conditions (10.2) and ( 0.3), the boundary conditions (7. 1) or

(8.9), and the Initial conditions (10.22).

Question.' What is an appropriate weak formulation of Problem OL?

Since 0 1 vol(B2) i V, (10.16) yields a bound for lumt)t which Is
uniform in t, and this, with (10.17), yields bounds for area(I(t)) and for

J. the L2(B) norm of u(t) -u(,t); similar bounds follow from (10.18). Thus
the growth conditions have the following

Corollary. Assume that C1 . C2. Then each solut/on of Problem OL has
(on its interVal of existence)

area(I(t)) and I lu(t)IIL2(h)

bounded uniformly in t by constants which depend only on the t

Remark. The bound on area(I(t)) precludes the formation of an interface
which is too wild. This stability is a consequence of interfacial
free-energy, manifested in the constant h. (As h tends to zero, the bound
on area(I(t)) tends to infinity.)

The relations( 10. 16)-( 0.18) can possIbly be used as a basis for a
study of existence, uniqueness, and stability for Problem 0L, as they yield
a-priori estimates for u and for the interface. Such a study, however, Is
beyond the scope of this paper.

1Cf. Visintin 119041, who - for a closely related problem - gives a weak formulation and establishes
-A 3Llobal existence.

i.e., only on 5, C, h, u0 (for an isothermal boundry), and the initial dats.
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10.2. Equilibrium In the quasi-linear theory.
In this section we discuss the equilibrium behavior of solutions to

Problem 0L, assuming throughout that

c-C2.

Consider, then, a solution of OL and suppose that

as t-o.m, an equilibrium state (u,,B.,B2.) exists.

Further, let u., denote the corresponding mean temperature and 1, the

corresponding Interface, and let

Io the initial-value of vol(B2) + CVum. (10.23)

A. Isolated boundary.
By (10. 17) It seems reasonable to expect that

u., - constant - u.1,
and therefore, In view of (10.16) and (10. 17), the equilibrium state should

be consistent with the variational problem:

minimIze hCVarea(1..) 4 vol(B. 2 )(vol(B. 2 ) - Eod. (10.24)

(In deriving (10.24), u.m was eliminated using the constraint equation

obtained from (10.16).) This problem Is nonstandard, but easily solved.
Since hCV 0 0, If (10.24) has a minimizer B.2, then (B.,B.2) has

minimal Interface In the sense explained In the Appendix. In fact, solving
(10.24) Is equivalent to tinding a v In [0,V] that minimizes

hCVamin(v) + v(v - E). (10.25)

In view of the properties of amin(v) expressed in Theorem I of the

Appendix, (10.25) has a solution v, and the corresponding solution of ttv

(cf. the Appendix) minimizes (10.24). In particular, for E ) 2V, B 2  B;

for Eo 0 O, B.2 a 0. Thus, granted the validity of (10.24), the equilibrium

configurations will have minimal Interface, and hence the interface will
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have constant mean curvature and meet aB orthogonally. Further, by
(10.23), the fluid phase will ultimately disappear If the initial
mean-temperature is low enough; the solid phase will disappear If the
Initial mean-temperature is high enough.

B. Isothermal boundary.
By (10.18), it seems reasonable fo expect that (B,.,62.) will solve

the variational problem:

minimize uovoI(B. 1) I h area(I=).

This Is the problem discussed under (B) of Section 8.2, and the conclusions
are no different.

56
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11. Quasi-static theory.
I I.I. Basic equations. Growth conditions.

A standard model for solidification is based on the system
(0.10)-(10.3) with

Cl a C2 O,

and hence on the equations

Au 0, q a -kigradu in B, ( 1.1)

u -- t,. [q]-m = Lv on 1. (11.2)

vm-n - 0 on al. (11.3)

These equations, although simple, have several interesting consequences,
chief among them being the Instability of the Interface In certain
circumstances.'

* We begin our discussion of this model by first noting the following
consequences of ( 0. 6)-( 100.18):

Growth conditions.
(1) For an Isolated boundary thefinterfaclal area decreases with time whi6
the phase volumes remain, constant

vol(Bi)" a 0, area(]" 10O. (1 1.4)

(I t) For an isotherfmal boundary,

"i ~uovol(B I + h area(I) gO. (15

Appropriate Initial conditions for the system (I1.1)- ( 1.3) are:

B(O)= BO(11.6)

with (301,B02) the initial distribution of phases. We shall designate by

Problem MS the Initial-value problem def ined by (11.1 )( 11.3), (7. 1) or
(8.9), and ( 1.6).

Question. What is an appropriate weak formulation of Problem MS?

lplullins and SearkI 11963.19641. o also Wagner 1956.
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As in Section 8.3, it is not difficult to extend our results for bounded
B to situations in which B is all of space with one of the phase regions
bounded for all time (cf. (8.18)). In particular, we have the following

6rowth conditions for an unbounded body. Let B, be thebounded
phase regon

(i) For the body Isolated at infinity,

vol(Bi)* - 0, area(D10. (11.7)

(11) For the body isothermal at infinity,

(- I),+uovol(Bi) + h area()" O. (1 1.8)

Remark. In ( 1.4) and (1 1.5), respectively, the 1 0 may be replaced by

= -h-Ilgradull 2  0 and = -Ilgradull 2 1 0;

an analogous assertion applies to (11.7) and (11.8).
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11.2. Equilibrium in the quasi-static theory.
Consider a solution of Problem MS and suppose that

as t -, an equilibrium state (u ,P.j,B.2) exists.

A. Isolated boundary.
1. B bounded.

In view of (1 1.4), we expect that the equilibrium configuration should
have minimal Interfacial-area (as defined in the Appendix), and hence the
equilibrium interface should have constant mean curvature and meet aB
orthogonally.
2. B unbounded.

Here, because of (11.7), the bounded phase region, at equilibrium,
should have minimal surface-area when compared to other regions of equal

A - volume. Granted this: the boundedohase region is spherical at equi/11ium.

B. Isothermal boundary.
Since ( 1.5) and ( 1.8) are the same as (8.12) and (8.20), the

.variational problems describing equilibrium states in the current theory
are exactly the same as those discussed in (B) of Section 8.2 and (B) of
Section 8.4, and the conclusions are the same. In particular, the assertions
In (B) of Section (8.4) concerning Interfacial Instabilities - such as those
exhibited by the prickly ball - are here fortified by the work of Mullins and
Sekerka [ 1963), who established interfacial instabilities for unbounded B
when the bounded phase Is an infinitesimal perturbation of a sphere.
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1 1.3. Quasi-static theory when one phase does not conduct heat.
Suppose that one of the two phases, phase 2 say, is a poor conductor of

heat. If we model this by setting k2 - 0; then, as is clear from the
derivation of ( 11.1) - ( 11.3), the temperature In phase 2 is Indeterminate,
while the temperature in phase 1 obeys the relations1

Au= 0 in B,';i (11.9)

u=-h&, 6u/6n = LIv on bB,

where, for convenience, we have assumed that the region B(t) occupied
by phase 1 is bounded, but that B itself is all of space. Here L= L/k1 ,
while au/an is the outward normal derivative on MBV.

Using steps analogous to those used to derive (10.5) and (10.6), It is not
difficult to verify that ( 1.9) yield the growth conditions:

' voi(B 1 )" = 0, area(6BI )° K 0. ( 11.10O)

Because of ( 1. 10), one might expect solutions of ( 1.9) to stabilize at
large time with B(t) ultimately spherical.

An appropriate initial condition for the system (1 1.9) is

B1(O)=Bo, (11.1 )

with BOl the region occupied by phase I at t = 0.

Remark. in this model only one phase enters the system (11.9), and the
notions of supercooling and superheating are extraneous; for that reason
the Instabilities discussed previously should not be encountered. This

* conjecture is reinforced by (11.10) and, even more so, by work of Duchon
and Robert [1984], who establish local existence and uniqueness for the
problem (11.9), (II.II) in R2 with Bo1 unbounded.2

Acknowledgment. I would like to acknowledge numerous interesting and
valuable discussions with F. Almgren, J. Ockendon, W. Pritchard,
R. Sekerka, and W. Williams. The work presented here was supported by
the Army Research Office and the National Science Foundation.

lcf. lullins [1960). who uses this system (with u concentrition) to model corrosion.

2See also Caroli. Caroli. Roulet, and Longer [19851, who study the existence or needle crystals using
the system (1 1.9) (in a moving frame of reference).
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Appendix. Some variational problems Involving interfaces.
Let R be a suff iciently nice subset of B, and let 1.~ denote the

corresponding interface; that is, Is the portion of aR contained In the
/Iteror of B. Let

V = vol(B),

and, for each ve[O,VJ, consider the problem

fly: mninimize area(%~) subject to vol(R) - v.

Let amin(v) denote the corresponding minimal area:

ammn(v) - inf[ area( R): vol(R) -vJ. (1)

Theorem 1.1 for each vc6[O, VI, Kt. has a so/ut/on, and for each so/ut/on
the corresponding interface has constant mnean curvature and meets dB

* orthogonally Morover amin(v) is continuous on [0, V1, strictly positive
on (ONV), andlzeroat v=OV.

For convenience, we say that a partition (R,B\R) has minimal
Interface provided R solves n.for v-=vol(R).

Let 0 >0 and q2 be given. Consider the problem

lIq: minnimie area(%) subject to vol(R) * Barea(%) S.

Theorem 2.2
.~4,(i) F6or q i V, W~ has a so/ut/on, and each so/ut/on R so/yes K fo

some vi[0,V.
0ii) For q > V, W q does not have a so/ut/on In the standard sense If [Rd)

* is a minimizing sequence with (I.) the corresponding sequence of
Interfaces, then

*VOI(Rd -* V, Barea(.) -+ q -V >0,

so that M\R, approaches a set with zero volume, bult nonzero surface
area

1Cf.. Ilssai and Pop 11974); Glusti (19811; Gonzalez. Massari. and TamanlnI 119831; Gurtin (1985).
2This solution of Problem W q Is due to F. Almgren (private commiunication).



Proof We can clearly write Wqin the form

maxim ize, vol(R) sulbject to vol(R) + IBarea(L,) =q.

Thus, since

this motivates the problem

maximiZe v subject to v amin(v) IQ, 0O1v iV. (2)

This problem clearly has a solution. For q V, the solution v has
v + amin(v) =q, and It is not difficult to to verify that any solution R of
tt solves W.This yields assertion (I) of the theorem. For q > V, the
solution is v =V, and this yields assertion 00i. 0
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Appendix. Scaling the quasi-linear theory. Discussion.
Insight into the approximations underlying the theories developed in

Sections 10 and I I can be obtained with the aid of appropriate scalings.
Consider the length and time scales defined by

E = f(TM)/L, t = ,2L/kiTM,

and replace the coordinates x and t by the dimensionless coordinates

x* = x4[, t* -- tit.

Then, using the dimensionless temperature, curvature and velocity

U* = (T - TM)/TM, L* -L, v* = vt/L,

and the dimensionless parameters

d* = TMC1/L, k* = k2/k=* c*M = L2/2 ,

we can render (10.1 )-( 10.3) dimensionless; the result, with the
superscript* omitted, is

du" = &u in B1, dcu = kAu in B2, (1)

u = - L, (gradu1 - k gradu2}-m = v on 1, (2)

vm-n = 0 on MI. (3)

Here time derivatives are with respect to t*, spatial derivatives with
respect to x*; B, and I are appropriately scaled; and gradu denotes

the limit of gradu as I is approached from B.

Remarks.
(i) The quasi-static theory studied in Section 11 follows, as a formal

approximation to (I )-(3), under the assumptions:

d << 1, cd/k << 1, k =O().

* Thus the assumptions underlying the quasi-static theory are that the
specific heats C, be small compared to the ratio L/TM, and that the

order-of-magnitude of the conductivities k1 and k2 be equal
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0(i) The theory of Section 11.3 (for phase 2 a nonconductor of heat)
follows formally from (I )-(2) under the assumptions:

d <<1, k << 1.

(By (2), the second assumption renders the temperature in phase 2
irrelevant to the determination of the temperature in phase 1.) Thus this
theory is based on two assumptions: that the conductivity in phase 2 be
small compared to the conductivity in phase 1 that the specific heats C
be small compared to the ratio L/TM.

(iii) The assumptions

d=0(1), k<< I

yield the following quasi-linear generalization of (11.9):

0 du = Au in B,

u=-L, m-gradu = v on 6B1 .

(iv) Generally, the length scale E will be very small. Thus the treatment
with 0 finite probably has physical relevance only when the maximum
diameter of 0 (before rescaling) is small, of a size comparable to the
length scale E.

(v) It might be that problems with 0 infinite - but not all of R3 - are
,important. Although we have not considered this case, it is clear that the

basic results deduced in Section 6, as well as much of what we have
,.' established in other sections, remain valid for such 0.

* -64-
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